If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2+16y-6y-2=0
We add all the numbers together, and all the variables
4y^2+10y-2=0
a = 4; b = 10; c = -2;
Δ = b2-4ac
Δ = 102-4·4·(-2)
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{33}}{2*4}=\frac{-10-2\sqrt{33}}{8} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{33}}{2*4}=\frac{-10+2\sqrt{33}}{8} $
| 70=9r | | 4c/11=-1/3 | | 9(x-5=4x-5 | | X²+1=3x+11 | | 80-9y=-6y | | -7/21=x/90 | | 2.50x+15=3x+10 | | 7(x-1)-3=2(x-1)+17 | | 3s+2=12-12s | | 9h-18=-99 | | 2x+6x=-32 | | .25x+.10(x+10)=20.7 | | 2y=10y-100 | | 870+x=7x+1 | | c/12=3.50 | | 17=2c+7 | | 8-10x=33 | | -8=c/13 | | m3=8m3=8 | | 33+6x=3(–1+5x) | | 3x+4×=6x | | -4a+5=9 | | -2x(x-5)=6(2-(1)/(2)x) | | 60/40=18/x | | 10x+6=44 | | y=3(120)+20 | | 125x+90=395 | | ∠A=8x+74∠B=2x+56∘ | | y=30-23.5 | | 60=0.5x-23.5 | | 2x+3+25=3x-7 | | 3x-2x+1=180 |